

IEC TS 62786-42

Edition 1.0 2026-01

TECHNICAL SPECIFICATION

**Distributed energy resources connection with the grid -
Part 42: Technical requirements for voltage measurement used to control DER
and loads**

CONTENTS

FOREWORD	5
1 Scope	7
2 Normative references	7
3 Terms, definitions and abbreviated terms	7
3.1 Terms and definitions	8
3.2 Abbreviated terms	12
4 Performance description	12
4.1 General	12
4.2 Input energizing quantity	13
4.3 Delay time	13
4.3.1 Technical description	13
4.3.2 Reporting of delay time declaration	14
4.4 Effective resolution and accuracy	14
4.4.1 General	14
4.4.2 Effective measurement resolution	14
4.4.3 Reporting of voltage accuracy	14
4.5 Measuring range and operating range	15
4.6 Timing characteristics	15
4.6.1 Reporting rate	15
4.6.2 Settling time	15
5 Summary of typical performances associated with different use cases	16
6 Description of functional test principles	18
6.1 General	18
6.2 Testing environment	19
6.3 Verification of delay time for voltage measurement	19
6.3.1 Test description	19
6.3.2 Example determination of delay time	21
6.4 Verification of effective resolution for voltage measurement	22
6.4.1 Test description	22
6.4.2 Example of determination of effective resolution	24
6.5 Verification of the measuring and operating range under steady state conditions	25
6.5.1 Test description	25
6.5.2 Example determination of measuring and operating range of voltage measurement	27
6.6 Measuring and operating range of voltage measurement under dynamic conditions	27
6.6.1 Test description	27
6.6.2 Verification of measuring range under dynamic conditions	29
6.6.3 Example of measuring range under dynamic conditions	30
6.7 Verification of settling time for voltage measurement	31
6.7.1 Test description	31
6.7.2 Verification of settling time for voltage measurement	32
6.7.3 Example of verification of settling time for voltage measurement	32
6.8 Verification of influence of harmonics	33
6.8.1 Test description	33

6.8.2	Verification of rejection of harmonics for the fundamental measuring function.....	36
6.8.3	Verification of influence of harmonics for the RMS measuring function	36
6.8.4	Example of verification of rejection of harmonics for the fundamental measuring function.....	37
6.9	Type test report.....	37
Annex A (informative)	Measurement classes	38
Annex B (informative)	Description of voltage measurement use cases	39
B.1	Use case “voltage measurement used for secondary voltage control”.....	39
B.1.1	Technical background for the use case	39
B.1.2	Resulting requirements for measurement.....	39
B.2	Use case “Fast response to voltage swells and voltage dips”	40
B.2.1	Technical background for the use case	40
B.2.2	Resulting requirements for measurement.....	42
B.3	Use case “DER synchronization”	43
B.3.1	Technical background for the use case	43
B.3.2	Resulting requirements for measurement.....	45
B.4	Use case “Over/under voltage ride through”	45
B.4.1	Technical background for the use case	45
B.4.2	Resulting requirements for measurement.....	46
B.5	Use case “Local voltage control system Q(U)”	47
B.5.1	Technical background for the use case	47
B.5.2	Resulting requirements for measurement.....	47
B.6	Use case “Anti-islanding detection”.....	48
B.6.1	Technical background for the use case	48
B.6.2	Resulting requirements for measurement.....	48
B.7	Use case “Undervoltage load shedding”	49
B.7.1	Technical background for the use case	49
B.7.2	Resulting requirements for measurement.....	49
B.8	Use case "Roof top PV voltage control".....	50
B.8.1	Technical background for the use case	50
B.8.2	Resulting requirements for measurement.....	51
Annex C (informative)	Influencing factors	52
C.1	Influencing factors	52
C.2	Functional tests	52
C.2.1	General.....	52
C.2.2	Noise.....	52
C.2.3	Unbalanced magnitude of energizing input quantities.....	54
Annex D (informative)	Step test equivalent time sampling technique	56
D.1	Overview	56
D.2	Equivalent time sampling.....	57
D.3	Determination of settling time using instrument errors	58
Bibliography	59
Figure 1 – Settling time description with input signal added	16	
Figure 2 – Example voltage delay time validation, measurement of delay time	21	
Figure 3 – Example of cross-correlations of the normalized voltage	21	
Figure 4 – Example voltage effective resolution	25	

Figure 5 – Example verification of measurement bandwidth under steady state conditions	27
Figure 6 – Results of tests for measurement range under dynamic conditions	31
Figure 7 – Verification of voltage settling time using positive 0,1 U_r step in voltage	33
Figure 8 – Verification of voltage settling time using negative 0,2 U_r step in voltage	33
Figure 9 – Waveforms with superimposed harmonics with $\varphi_k = 0^\circ$ (blue) and $\varphi_k = 180^\circ$ (red)	35
Figure 10 – Three-phase harmonic test signals with 0° and 180° harmonic phases	36
Figure 11 – Example of verification of rejection of harmonics	37
Figure B.1 – Example of system diagram of centralised voltage control with SVR	39
Figure B.2 – Principle of secondary voltage regulations	40
Figure B.3 – Location of a DVR	41
Figure B.4 – Voltage dip caused by motor starting	41
Figure B.5 – Typical volt-var response curve	42
Figure B.6 – Example of system diagram of a three-phase PV system for voltage control and synchronization	43
Figure B.7 – Doubly-fed wind turbine grid-connected	44
Figure B.8 – Example of undervoltage ride through capability	46
Figure B.9 – Schematic of a typical Q(U) control	47
Figure B.10 – Example of system diagram of a PV system for voltage control	51
Figure C.1 – Voltage errors from noise tests	54
Figure C.2 – Voltage relative error due to unbalanced input signal magnitude	55
Figure D.1 – Example of reports during step response	56
Figure D.2 – Example of reports during step response with higher resolution	57
Figure D.3 – Example of reports during step response with higher resolution	58
 Table 1 – Performance characteristics presented Clause 4	12
Table 2 – Example of delay time	14
Table 3 – An example of voltage measurement resolution and maximum error	14
Table 4 – Examples of measuring range and operating range for voltage measurement	15
Table 5 – Reporting of settling time and reporting rate	15
Table 6 – List of use cases and associated requirements	17
Table 7 – Voltage measurement requirements using modulated test signals at tested power frequency $f_m = f_{nominal}$	30
Table 8 – Input signal harmonic magnitude	34
Table A.1 – Measurement classes by voltage measurement steady state accuracy	38
Table A.2 – Measurement classes by measurement instrument steady state settling time	38
Table B.1 – Requirements for voltage measurement – Use case “voltage measurement used for secondary voltage control”	40
Table B.2 – Volt watt mode parameters (example)	42
Table B.3 – Requirements for voltage measurement – Use case “Fast response to a voltage swell and dip”	43
Table B.4 – Requirements for voltage measurement – Use case “synchronization”	45

Table B.5 – Requirements for voltage measurement – Use case “Over/under voltage ride through”	47
Table B.6 – Voltage measurement requirement – Use case “Local voltage control system Q(U)”	48
Table B.7 – Requirement for voltage measurement – Use case “Anti-islanding detection”	49
Table B.8 – Requirements for voltage measurement – Use case “Voltage measurement used for undervoltage load shedding”	50
Table B.9 – Requirements for voltage measurement – Use case “voltage measurement used for Rooftop PV voltage control”	51
Table C.1 – Influencing factors of voltage measurements	52
Table C.2 – Magnitudes and phase angles for three phase voltages	54

INTERNATIONAL ELECTROTECHNICAL COMMISSION

**Distributed energy resources connection with the grid -
Part 42: Technical requirements for voltage measurement
used to control DER and loads**

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) IEC draws attention to the possibility that the implementation of this document may involve the use of (a) patent(s). IEC takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, IEC had not received notice of (a) patent(s), which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at <https://patents.iec.ch>. IEC shall not be held responsible for identifying any or all such patent rights.

IEC TS 62786-42 has been prepared by IEC technical committee 8: System aspects for electrical energy supply. It is a Technical Specification.

The text of this Technical Specification is based on the following documents:

Draft	Report on voting
8/1755/DTS	8/1786/RVDTs

Full information on the voting for its approval can be found in the report on voting indicated in the above table.

The language used for the development of this Technical Specification is English.

This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are described in greater detail at www.iec.ch/publications.

A list of all parts in the IEC 62786 series, published under the general title *Distributed energy resources connection with the grid*, can be found on the IEC website.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under webstore.iec.ch in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn, or
- revised.

1 Scope

This document defines minimum requirements for AC voltage measurement used to control distributed energy resources (DER) and loads connected to distribution networks.

This document specifies the characteristics of voltage magnitude measurement to evaluate their performances (including voltage and frequency measuring range, accuracy, voltage and frequency operating range, resolution, etc).

This document describes the main use cases of voltage measurement, with associated level of performances.

This document describes the principle of functional tests to evaluate the specified characteristics and defines the influencing factors that affect these performances, under steady state or dynamic conditions.

This document defines the functional requirements applicable to voltage measurement which can be embedded inside DER or loads controller or performed as an external control system. In the case of DER, this document is a subpart of requirements which are defined in the other parts of the IEC 62786 series.

This document is applicable to DER and loads regardless of voltage level at the point of connection to the distribution grid.

This document does not specify hardware, software or a method for voltage measurement. It does not specify tests linked to environmental conditions associated to hardware devices (climatic, mechanical stress, electromagnetic compatibility test, etc).

Voltage measurements associated with time stamping are not in the scope of this document. These measurements are covered by IEC/IEEE 60255-118-1 [1]¹.

Voltage measurement associated to protection functions or protection relays are not in the scope of this document. These requirements are covered by IEC 60255-127 [2].

NOTE As defined in the first paragraph, this document is focused on voltage measurements used to control DER and loads. But the technical requirements defined in this document, with the list of declared characteristics and their associated functional tests, can also be applicable for other uses (e.g. small or large generators of power substations connected to transmission or distribution grids, power meter devices, power quality instruments, etc).

2 Normative references

There are no normative references in this document.

Bibliography

- [1] IEC/IEEE 60255-118-1, *Measuring relays and protection equipment - Part 118-1: Synchrophasor for power systems - Measurements*
- [2] IEC 60255-127, *Measuring relays and protection equipment - Part 127: Functional requirements for over/under voltage protection*
- [3] A. Fertner, A. Sjolund. *Comparison of Various Time Delay Estimation Methods by Computer Simulation*. IEEE Trans. Acoustics, Speech and Signal Processing 34;5 (1986) 1329-1330.
- [4] IEEE Std. 1241-2010 *IEEE Standard for Terminology and Test Methods for Analog-to-Digital Converters*, IEEE, New York, NY, 2011
- [5] IEEE Std. 1057-2007 *IEEE Standard for Digitizing Waveform Recorders*, IEEE, New York, NY, 2007
- [6] IEC TS 62786-41, *Distributed energy resources connection with the grid - Part 41: Requirements for frequency measurement used to control distributed energy resources (DER) and loads*
- [7] IEC 61000-2-2, *Electromagnetic compatibility (EMC) - Part 2-2: Environment - Compatibility levels for low-frequency conducted disturbances and signalling in public low-voltage power supply systems*
- [8] IEC TS 62786-1, *Distributed energy resources connection with the grid - Part 1: General requirements*
- [9] IEC TS 62898-3-3, *Microgrids - Part 3-3: Technical requirements - Self-regulation of dispatchable loads*
- [10] IEC TS 62910, *Utility-interconnected photovoltaic inverters - Test procedure for under voltage ride-through measurements*
- [11] IEC 61000-4-30, *Electromagnetic compatibility (EMC) - Part 4-30: Testing and measurement techniques - Power quality measurement methods*
- [12] IEC 61557-12, *Electrical safety in low voltage distribution systems up to 1 000 V AC and 1 500V DC - Equipment for testing, measuring or monitoring of protective measures - Part 12: Power metering and monitoring devices (PMD)*
- [13] CLC/EN 50549-1, *Requirements for generating plants to be connected in parallel with distribution networks - Part 1: Connection to a LV distribution network - Generating plants up to and including Type B*
- [14] CLC/EN 50549-2, *Requirements for generating plants to be connected in parallel with distribution networks - Part 2: Connection to a MV distribution network - Generating plants up to and including Type B*
- [15] *Regulations of European commission 2016/631 (14 April 2016), Network code on requirements for grid connection of generators (RfG)*
- [16] *Regulations of European commission 2016/1388 (17 August 2016), Network code on Demand Connection (DCC)*
- [17] IEEE 1547, *Standard for Interconnection and Interoperability of Distributed Energy Resources with Associated Electric Power Systems Interfaces*